
Contents lists available at ScienceDirect

Hydrometallurgy

journal homepage: www.elsevier.com/locate/hydromet

Dynamic multi-objective optimization arising in iron precipitation of zinc
hydrometallurgy

Jie Han, Chunhua Yang*, Xiaojun Zhou, Weihua Gui
School of Information Science and Engineering, Central South University, Changsha 410083, PR China

A R T I C L E I N F O

Keywords:
Dynamic multi-objective optimization
Discretization method
State transition algorithm
Iron precipitation

A B S T R A C T

The additions of oxygen and zinc oxide for the goethite process determine the cost and efficiency of the iron
precipitation process. As the two production targets (cost and efficiency) are conflicting and the chemical re-
action is a continuous process that changes over time, the amounts of additive need to be dynamically optimized
to satisfy the requirement of industrial application. In this paper, a discretization method based on control
variables and control intervals is proposed to transform the dynamic optimization problem to a nonlinear
mathematical programming problem. Then, a multi-objective optimization approach based on the state transi-
tion algorithm and constrained nondominated sorting is proposed to find the Pareto optimal solutions. Finally,
an evaluation mechanism is proposed to obtain the best solution for industrial applications. The results from a
series of simulation experiments show the effectiveness of the proposed approach, e.g. the daily average addi-
tions of oxygen and zinc oxide are decreased by 778.0854 m3 and 4.9013 t, respectively.

1. Introduction

Currently, zinc hydrometallurgy industry produces approximately
80% of zinc production worldwide (Balarini et al., 2008). The process
of atmospheric direct leaching of zinc concentrate under oxygen-rich
conditions involves five steps: roasting, calcine leaching, solution pur-
ification, electrowinning, and melting (Takala, 1999; Zhang et al.,
2016). Since iron contained in zinc concentrates is the oxygen carrier
which can improve the reaction rate in leaching, the leaching solution
has high concentration of iron, especially in the ferrous form. However,
iron can significantly disturb the solution purification and the electro-
winning of zinc by decreasing current efficiency. Therefore, appropriate
control of the iron precipitation step is important to the zinc hydro-
metallurgy process.

In zinc hydrometallurgy, iron can be mainly precipitated as goethite
(FeOOH) (Pappu et al., 2006), jarosite (KFe3(SO4)2(OH)6) (Pradel et al.,
1993), hematite (Fe2O3) (Ismael and Carvalho, 2003), and paragoethite
(Fe2O5 ⋅9H 2O) (Güler and Seyrankaya, 2016; Loan et al., 2006). The
goethite process is always considered as the most common way to re-
move iron because it has better filterability, higher purity, and larger
crystal size (Chang et al., 2010). In the goethite process, the ferrous iron
is oxidized to the ferric iron by feeding oxygen into the zinc sulfate
solution, and the ferric iron is hydrolyzed to form the goethite polymer
precipitate. Moreover, in order to keep the acid-base equilibrium of the
goethite process, zinc oxide needs to be added in the reaction solution

(Na et al., 2016). The details of this process can be simply described by
following chemical equations (Xie et al., 2015a).

Oxidation reaction: 4Fe2++4H++O2→4Fe3++2H2O, (1)

Hydrolysis reaction: Fe3++2H2O→FeOOH +3H+, (2)

Neutralization reaction: 2H+ +ZnO→Zn2++H2O, (3)

where the nature of underlying microscopic phenomena is chaotic and
complicated (control of the iron precipitation process is difficult). On
the one hand, the reaction condition, including the total iron con-
centration and the pH value, must be within the strict limits of technical
requirements. For example, if the pH value is too high, the precipita-
tions of other impurities will be formed, such as Cu(OH)2; whereas if
the pH value is too low, the precipitate will be redissolved. Because the
iron concentration and pH value can be adjusted by O2 and ZnO, the
reasonable control of the amounts of additive is very important to the
iron precipitation process.

On the other hand, the cost and the efficiency (two production
targets) of the iron precipitation process can also be adjusted by the
additions of oxygen and zinc oxide. For instance, if the amounts of
additive are too high, it will lead to huge economic loss. On the con-
trary, if the amounts of additive are too low, the efficiency of the iron
precipitation (which is a performance metric of the process and can be
defined as the percentage of removed ferrous iron) will be reduced. This
is due to the fact that insufficient oxygen will result in excessive outlet
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ferrous iron while insufficient zinc oxide will cause precipitate to dis-
solve. Thus, it is important to find the Pareto optimal solution to re-
present the trade-off between the two production objectives when de-
termining the amounts of additive. Moreover, since the chemical
reaction in the iron precipitation process is a continuous process that
changes over time (follows first-order kinetics), the control of the
amounts of additive turns out to be a dynamic multi-objective optimi-
zation problem.

To the authors' best knowledge, there exists no effective method to
consider both cost and efficiency for the iron precipitation process. One
recent paper, (Xie et al., 2017) only investigated the cost of the goethite
process with dynamic modeling and optimal control (only optimizes the
consumption of oxygen and zinc oxide). Note that currently the dy-
namic multi-objective method has attracted the attention of many re-
searchers and has been applied to industrial applications (Chen et al.,
2015; Farina et al., 2004; Helbig and Engelbrecht, 2013). Kong et al.
(2013) proposed a hybrid evolutionary multi-objective optimization
strategy for the dynamic power supply problem in magnesia grain
manufacturing. Bayat et al. (2014) used the dynamic multi-objective
optimization method to deal with the control of industrial radial-flow
fixed-bed reactor of heavy paraffin dehydrogenation. Soroudi and
Afrasiab (2012) adopted the binary PSO-based dynamic multi-objective
model to optimize distributed generation planning under uncertainty.
Riascos and Pinto (2004) proposed a simultaneous optimization ap-
proach using orthogonal collocation to solve the optimal control pro-
blem in bioreactors.

The dynamic multi-objective optimization of the iron precipitation
process is a challenging problem, because its model not only has non-
convex functions (including differential equations) but also is a highly
nonlinear, multidimensional, and multimodal problem with many
constraints (Na et al., 2016). In this paper, a dynamic multi-objective
optimization method based on a global optimization algorithm is pro-
posed to optimize the process of iron precipitation by goethite.

The major contributions and novelty of this paper are briefly sum-
marized as follows.

(1) A dynamic optimization model for iron precipitation by goethite is
established, which not only minimizes the cost but also maximizes
the efficiency of the iron precipitation process;

(2) A discretization method based on control variables and control in-
tervals is proposed to transform the dynamic optimization problem
to a nonlinear mathematical programming problem, and the state
transition algorithm (STA) based on constrained nondominated
sorting is introduced to solve the multi-objective optimization
problem;

(3) An evaluation mechanism based on the concentration of ions and
their trends is proposed to select the best result for industrial ap-
plications;

(4) By comparing the simulation results with those obtained from
manual control, the effectiveness of the proposed method is pre-
sented.

2. Materials and method

2.1. Process description

The iron precipitation process is an important part of the atmo-
spheric direct leaching of zinc concentrates, and the goethite process is
used to validate and test the effectiveness of optimization and control
strategy. The flow diagram of the goethite process in a certain zinc
hydrometallurgy plant in China is shown in Fig. 1. The leaching solu-
tion entering the reactors is composed of various impurities (iron
content is the highest). Iron is precipitated in four connected con-
tinuous stirred tank reactors (300 m3). Oxygen and zinc oxide are fed
into the reactor to maintain the concentration of outlet solution within
the desired limits. After the precipitation reaction is finished, the outlet

solution from the last reactor is sent to a overflow tank, meanwhile the
precipitate is separated from the purified solution by thickener. The
solution from the top of the thickener is pumped to the other process for
further treatment, while a portion of the precipitate from the bottom of
the thickener is recycled to the first reactor. The remaining precipitate
is finally sent to the filter press to produce goethite.

During the goethite process, the amounts of zinc oxide and oxygen
added to the reactors are adjusted according to the manufacturing-
condition and human-experience. Note that the latest specifications of
the influent and the effluent in the goethite process (from the first re-
actor (#1) to the last reactor (#4)) are shown in Table 1.

2.2. Dynamic multi-objective optimization model

A dynamic multi-objective optimization model for the goethite
process is established in this subsection. By optimizing the amounts of
additive in each reactor, we are able to reduce the cost of additives as
low as possible and maintain the efficiency of the iron precipitation
process as high as possible, where all the technical requirements of
Table 1 are met.

2.2.1. Assumptions
The following assumptions are considered in the problem formula-

tion:

(1) The temperature and agitation rates in each reactor vary little, so
they are considered to be constant.

(2) In the normal production process, the flow rate of influent and
underflow do not fluctuate significantly and are therefore con-
sidered to be constant.

2.2.2. Objective functions
During the goethite process, the concentration of the ferrous iron,

ferric iron, and hydrogen ion must be maintained to a desired level by
adding zinc oxide and oxygen. So the state variables consist of the
concentration of Fe2+, Fe3+ and H+ in #i(i=1,2,3,4) reactor, which
are described as = c c cc [ , , ]i i i i T

1 2 3 . The inlet concentration of Fe2+, Fe3+

and H+ in the #i reactor are defined as = c c cc [ , , ]i i i T
0
i

0,1 0,2 0,3 . The con-
trol variables in #i reactor are the rate of the additions of oxygen and
zinc oxide, which can be defined as = u uu [ , ]i i i

1 2 . Thus, the objective
functions of the dynamic multi-objective optimization model are de-
fined as

∫= +

=
−

J p u t p u t dt

J

min ( * ( ) * ( ))

max ,

T

c c T

c

1 0 1 1 2 2

2
(0) ( )

f

f0,1
1

1
4

0,1
1 (4)

where = ∑ =u t u t( ) ( )i
i

1 1
4

1 and = ∑ =u t u t( ) ( )i
i

2 1
4

2 . J1 denotes the total
cost of oxygen and zinc oxide, while J2 refers the efficiency of iron
precipitation (the percentage of the removed ferrous iron). p1 and p2 are
the price of oxygen and zinc oxide, respectively. Tf represents the time
of solution from the #1 reactor to #4 reactor, Tf=4V/(F+Fu), where F
and Fu are the flow rate of the leaching solution and the underflow,
respectively. V denotes the volume which is the same for all reactors.

It is worth mentioning that the solution will flow out from #4 re-
actor after the reaction time Tf. In this paper, the efficiency of the iron
precipitation process is defined by the inlet concentration of ferrous
iron in #1 reactor at time 0 and the outlet concentration of ferrous iron
in #4 reactor at time Tf.

2.2.3. The dynamic state variable model
As shown in Eqs. (1) to (3), there are three major chemical reactions

in the goethite process. Based on the theory of first order kinetics, the
reactions in four reactors can be analyzed as follows.

Firstly, since the copper ion in oxidation reaction has a catalytic
effect, the reaction in Eq. (1) can be divided into two sub-step reactions

J. Han et al. Hydrometallurgy 173 (2017) 134–148

135



(Stumm and Lee, 1961), which are shown as follows:

Fe2++Cu2+→Fe3++Cu+ (5-a)

4Cu++O2+4H+→4Cu2++2H2O (5-b)

According to the historical measurement data obtained from the
zinc hydrometallurgy plant (Xie et al., 2017), the ferrous iron con-
centration and oxygen concentration in four reactors can be shown in
Table 2.

Based on the principle of mass conservation in oxidation reaction,
4 mol of ferrous iron will react with 1 mol of oxygen. In #1 reactor, the
concentration of oxygen is much lower than that of ferrous iron. Since
the reaction rate depends on the concentration of reactant, the reaction
rate of the first sub-step reaction is much higher than that of the second
one (in #1 reactor). According to the theory of reaction rate controlling
step (Nazemi et al., 2011), the overall reaction rate is determined by the
lowest rate of the sub-step reaction. Thus, the oxidation reaction is
mainly affected by the second sub-step reaction and the oxidation re-
action rate is approximately equal to the rate of the second sub-step
reaction in #1 reactor. While in #2 to #4 reactors, the concentration of
ferrous iron is nearly 4 times that of oxygen and there are little dif-
ference between the reaction rate of Eqs. (5-a) and (5-b). Thus, the
oxidation reaction is controlled by both Reactions (5-a) and (5-b). Fi-
nally, the oxidation rate ri

1 in #i reactor can be described as follows

=
⎧
⎨
⎩

+ =

+ =

+

+
r

k η C C c i

k η C x C c i

(1 )( ) ( ) 1

(1 )( ) ( ) ( ) 2, 3, 4,
i

i i i i β i γ

i i i i α i β i γ1
1 Cu O 3

1 Cu 1 O 3

2 2

2 2 (6)

where k i
1 and ηi are the oxidation rate constant and the catalytic action

coefficient in the #i reactor, respectively; +CCu2 and CO2
are the con-

centration of Cu2+ and O2 in the #i reactor, respectively;
= +C λuln ( 1)i i

O 12 (λ is the coefficient of dissolved oxygen); α, β, and γ
are the reaction orders (based on experimental analysis (Verbaan and
Crundwell, 1986), λ=0.1242, α=2, β=1, and γ=−0.36).

Secondly, as shown in Eq. (2), the ferric iron is hydrolyzed to goe-
thite in the hydrolysis reaction, and the hydrolysis reaction rate ri

2 in #i
reactor can be calculated by

= =r k c i, 1, 2, 3, 4,i i i
2 2 2 (7)

where k i
2 denotes the hydrolysis rate constant in the #i reactor.

Thirdly, during the goethite process, the zinc oxide is used to neu-
tralize the excess hydrogen ions, which is described in Eq. (3). The
neutralization reaction rate ri

3 in #i reactor can be calculated by

= =r k u c i, 1, 2, 3, 4,i i i i
3 3 2 3 (8)

where k i
3 denotes the neutralization rate constant in the #i reactor.

Finally, since the inlet flow in #1 reactor consists of two parts (the
leaching solution and the underflow), the dynamic model of #1 reactor
(Fig. 2) is different from that in #2 to #4 reactors (Fig. 3). Considering
the impure ion concentration of underflow is much lower than that of
leaching solution (e.g., according to the data from real-life plant, the
concentration of ferrous iron in the underflow is nearly 1/50 of that in
the leaching solution, and the flow rate of underflow is about one third
of that of the leaching solution), the influence of the concentration of
underflow in #1 reactor can be ignored.

Based on the principle of material balance, the rates of the con-
centration change of the ferrous iron, the ferric iron, and the hydrogen
ion in #i reactor can be described as

= + + =A A tc c c ϕ c u p c u̇ ( , ) ( , , ),i i i i i i i i i i i
1 0 2 (9)

where

Fig. 1. Flow diagram of the goethite process.

Table 1
The desired specifications of the influent and the effluent in the goethite process.

Parameter Unit Influent #1Effluent #2Effluent #3Effluent #4Effluent

Flow rate of leaching solution m3/h 80–200 – – – –
Flow rate of underflow m3/h 40–60 – – – –
Temperature K 353 – – – –
Cu2+ g/L 0.9–3 – – – –
pH – 2–2.5 2.7–3.5 2.7–3.5 2.7–3.5 2.7–3.5
Fe3+ g/L 1–2 ≤2 ≤2 ≤2 ≤2
Fe2+ g/L 9–15 6–8 2.5–5 1–2 0.3 ≤ 0.8

Table 2
The oxygen and ferrous iron concentration in four reactors (unit: mmol/L).

Parameter #1 reactor #2 reactor #3 reactor #4 reactor

+CFe2 107.4–214.9 53.7–107.4 17.9–71.6 3.6–35.8

CO2
3.8–6.4 13.9–15.0 9.6–10.4 8.0–8.7
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2.2.4. The constraint of inlet ion concentration
Since the time of solution in the pipes between the reactors is re-

latively short when compared to the time of the solution reacting in the
reactors and there are no additives in the pipes, the coupling effects
occurring between two consecutive reactors can be ignored （Xie et al.,
2015b）. Then the inlet reactant concentration of the #i reactor is the
outlet reactant concentration of the #i-1 reactor (i=2,3,4), which can
be expressed as

= =− t ic c ( ), 2, 3, 4.i i
0

1 (10)

2.2.5. The constraint of outlet ion concentration
On the basis of the technical requirement of the goethite process,

the outlet concentration of ions must satisfy the specifications in
Table 1, which can be described as

⎧

⎨
⎪

⎩⎪

≤ ≤ =

≤ =

≤ ≤ =

c c t c i

c t c i

c c t c i
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( ) , 1, 2, 3, 4,

i i i

i i

i i i

1,min 1 1,max

2 2,max

3,min 3 3,max (11)

where ci
1,min and ci

3,min is the minimum concentration values of Fe2+

and H+ in #i reactor, respectively; and ci
1,max , ci

2,max and ci
3,max are the

maximum concentration values of Fe2+, Fe3+ and H+ in #i reactor,
respectively.

2.2.6. The constraint of the amounts of additive
According to equipment capacity and production requirements, the

amounts of additive must be within the limits, which can be defined as

⎧
⎨⎩

≤ ≤ =

≤ ≤ =

u u t u i

u u t u i

( ) , 1, 2, 3, 4
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i i i
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2,min 2 2,max (12)

where u i
1,min and u i

2,min are the allowed minimum amounts of oxygen
and zinc oxide in #i reactor, respectively; u i

1,max and u i
2,max are the al-

lowed maximum amounts, respectively.

2.2.7. The resulting dynamic multi-objective formulation and analysis
Based on the above analysis, the dynamic multi-objective optimi-

zation problem can be expressed as follows:
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f

(13)

The optimization problem of the iron precipitation process is a
problem with high nonlinearity and strong coupling, and it is usually
difficult to solve this type of problem (as shown in Fig. 4). On the one
hand, since the state variables and control variables are the function of
time rather than a scalar quantity, this kind of problem is an infinite
dimensional problem (a common method is to convert the dynamic
optimization problem into a finite-dimensional nonlinear programming
problem based on variable discretization (Angira and Santosh, 2007;
Kim et al., 2008)). Considering the discretization of both state variables
and control variables will cause huge computational cost, the dis-
cretization method in this paper is only based on the control variables
(the control interval is also optimally adjusted).

On the other hand, due to the presence of two production objectives

Fig. 2. The CSTR system for #1 reactor.

Fig. 3. The CSTR system for #2,#3,#4 reactors.
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and many state constraints, it is necessary to use an appropriate opti-
mization method to find its true Pareto solutions. The state transition
algorithm (STA) (Zhou et al., 2013, 2012, 2014) is a stochastic opti-
mization approach with strong global search ability. In this paper, a
multi-objective optimization algorithm based on the STA and con-
strained nondominated sorting is proposed.

2.3. Discretization method based on control variable and control interval

The discretization method based on control variables is widely used
in dynamic optimization problems. It divides the time span into several
intervals, and uses basis functions with unspecified parameters to ap-
proximate the control variables (Shi, 2002). The common discretization
method always sets the control intervals to equal length (Chen et al.,
2014a), which cannot adjust the control period according to the char-
acteristics of the practical problem. Take a bang-bang control problem
for example, the optimal control trajectory is given as follows

= ⎧
⎨⎩

∈
∈

ι t
if t
if t

( )
1, [0, 0.7]
0, [0.7, 5].optimal

(14)

If the control intervals are set equally and the time span [0,5] is
partitioned into 10 parts [0,0.5,1,…,4.5,5], the control trajectory can
be obtained as

= ⎧
⎨⎩

∈
∈

ι t
if t
if t

( )
1, [0, 0.5]
0, [0.5, 5].1

(15)

The error between ιoptimal and ι1 is ∫= − =err ι u dt| | 0.2optimal1 0
5

1 . In
order to reduce the error, the time span is partitioned into 20 parts
[0,0.25,0.5,…,4.75,5] and the control trajectory can be obtained as

= ⎧
⎨⎩

∈
∈

ι t
if t
if t

( )
1, [0, 0.75]
0, [0.75, 5].2

(16)

The error between ιoptimal and ι2 is ∫= − =err ι ι dt| | 0.05optimal2 0
5

2 . If the
control intervals can be adjusted, the time span only need to be

partitioned into 2 parts to obtain the optimal trajectory. Therefore, the
non-uniform discretization method is more flexible. In addition, to
improve the control precision, the number of control intervals in uni-
form discretization method is always set to a large value, which may
increase the difficulty of the optimization problem and the complexity
of the industrial operation (Chen et al., 2014b). Thus, in this paper, the
time span is partitioned into multiple non-uniform intervals which is
determined by optimization algorithm. For convenience, the control
intervals are set the same for the two control variables (u i

1 and u i
2).

Thus, the time span [0,Tf] of the optimization model are partitioned
into N parts = …−t t n N[ , ]( 1, 2, , )n

i
n
i

1 , which can be defined as follows

= < < < … < =t t t t T0 .i i i
N
i

f0 1 2 (17)

In the goethite process, the control variables are approximated by
piecewise constant function at optimized switching time. The vector of
control parameters in each reactor is defined as
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During the entire time span, the control variable can be described as

∑=
= −

t θ tu κ κ( | ) ( ),n
i i

n

N

n
i

t t
i

1
[ , )n

i n
i

1 (19)

where

= ⎧
⎨⎩

∈ −
−

θ t t t t
elsewhere

( ) 1, [ , )
0,t t

i n
i

n
i

[ , )
1

n
i n

i
1

According to the Eq. (13), the dynamic optimization problem can be
transformed to

Fig. 4. The analysis for the optimization problem arising in the goethite process.
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In Eq. (20), the vector of control parameters κi and the control in-
tervals = …−t t n N[ , ]( 1, 2, , )n

i
n
i

1 need to be determined. The decision
variable D of optimization problem is defined as follows.
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2.4. Multi-objective optimization method based on the STA and constrained
nondominated sorting

According to the optimization model of Eq. (20), the optimization
problem not only has two objectives but also consists of many con-
straints. In this paper, a selection strategy based on constrained non-
dominated sorting is cooperated with the STA to deal with this kind of
multi-objective optimization problem. Firstly, the STA is used to gen-
erate candidate solutions and then the selection strategy is adopted to
choose the optimal solutions.

2.4.1. A brief description of the state transition algorithm
Based on the concepts of state transition and state space in control

theory, the STA (Han et al., 2017b; Zhou et al., 2013, 2017, 2012,
2014) is proposed to deal with nonlinear nonconvex optimization
problems. In the STA, every solution of the problem is regarded as a
state, and the updating of current solution is considered as a state
transition. The generating of the candidate solutions in the STA can be
described as follows

⎧
⎨⎩

= +
=

+

+ +

A B
y f

x x ν
x( ),

l l l l l

l l

1

1 1 (22)

where, xl ∈ℝn represents a candidate solution; Al and Bl stand for
transformation operators; νl is a function of xl and historical state; f is
the objective function.

There are four special state transformation operators to generate
candidate solutions.

(1) Rotation transformation

= ++ ε
w

Rx x
x

x1 ,l l a
l

r l1
2 (23)

where εa is the rotation factor; Rr∈ℝ w×w, is a random matrix with
its elements belonging to the range of [−1,1] and ∥⋅∥2 is the 2-norm
of a vector. The rotation transformation can generate the candidate

solution in a domain of a hypersphere with a given radius α, which
is a local search operator.

(2) Translation transformation

= + −
−+

−

−
ε Rx x x x

x x
,l l b t

l l

l l
1

1

1 2 (24)

where εb is the translation factor; Rt∈ℝ is a random variable with its
elements belonging to the range of [0,1]. The translation transfor-
mation has the function of line search which is only performed
when a better solution can be found by other transformation op-
erators.

(3) Expansion transformation

= ++ ε Rx x x ,l l c e l1 (25)

where εc is the expansion factor; Re ∈ℝw×w is a random diagonal
matrix with its elements obeying the Gaussian distribution with
mean value 0 and standard deviation 1. The expansion transfor-
mation can search in the whole space, which is a global search
operator.

(4) Axesion transformation

= ++ ε Rx x x ,l l d a l1 (26)

where εd is the axesion factor; Ra∈ℝ w×w is a random diagonal
matrix with its elements obeying the Gaussian distribution with mean
value 0 and standard deviation 1 and only one random position having
nonzero value. The axesion transformation is designed for single di-
mensional search as well as global search.

For a given solution, the aforementioned state transition operators
can generate many different candidate solutions. In this paper, the
number of candidates generated by a certain operator is set to 40 and
the transformation operators are alternately and independently applied
in an iteration. To achieve a better understanding of the detailed steps
of the STA, (Zhou et al., 2016) has proposed the Matlab toolbox for
continuous state transition algorithm with single objective function.

2.4.2. Constrained nondominated sorting
From Eq. (20), the problem in the goethite process is a constrained

multi-objective optimization problem, and all of the constraints are
inequality constraints. For ease of understanding, several definitions are
given as follows.
Definition 1 (Feasible region). The set of solutions that satisfy all
constraints ≤g x( ) 0ig (ig=1,2,…,mg, where mg is the number of
inequality constraints), is called the feasible region, which is
described as:  = ∈ ≤gx x{ | ( ) 0}n .

Definition 2 (Constraint violation). For the inequality constraints
≤g x( ) 0ig , =G gx x( ) max {0, ( )}i i

ν
g g is the violation of solution x on

constraint gig, where ν is normally 1 or 2. = ∑ =G Gx x( ) ( )i
m

i1g
g

g is called
the constraint violation of solution x on all constraints.

Definition 3 (Pareto dominate). For two objectives f1 and f2 in a
minimization problem, the solution x1‘ pareto dominates' (is better
than) the solution x2 is true when the following two conditions hold:

(1) ≤ =f x f x i( ) ( ), 1, 2i i f1 2f f , which means that all objective values of x1
are not worse than x2;

(2) ∃ = <i s t f x f x1, 2, . . ( ) ( )f i i1 2f f , which means that at least one
objective value of x1 is better than that of x2.Because of the pre-

sence of constraints, the definition of domination between two solutions
in a minimization problem is modified as follows.

Definition 4 (Constrained dominate). A solution x1 constrained-
dominates a solution x2, if any of the following conditions is true.

(1) Solution x1 is feasible and solution x2 is infeasible.
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(2) Both solutions are infeasible, but solution x1 has smaller constraint
violation.

(3) Both solutions are feasible, but solution x1 pareto dominates solu-
tion x2.

Definition 5 (Pareto-optimal solution). In the decision space, a set of
optimal solutions is called the Pareto-optimal solution (POS) if none of
the other solutions dominates any of them.

Definition 6 (Pareto-optimal front). The mapping of POS in the objective
space is called the Pareto-optimal solution (POF).

When selecting optimal solutions from the candidate solutions,
there are two strategies in this part.

Firstly, in order to reduce the computational complexity, for each
solution xτ, the number of solutions mτ which constrained dominate xτ
is calculated, and the set of solutions Sτ that xτ constrained dominate is
obtained. If mτ=0, the solution xτ belongs to the first nondominated
front. Then, for each solution xτ with mτ=0, we visit each member xς of
the set Sτ and reduce its constrained domination count by one. If for any
member xς the constrained domination count becomes zero, these
members belong to the second nondominated front. The process con-
tinues until all fronts are identified (Deb et al., 2002; Peng et al., 2013;
Wang et al., 2011).

Secondly, in order to preserve the diversity of optimal solutions, we
investigate the strategy of crowding distance (Deb et al., 2002). For two
objective functions f1 and f2, the crowding distance P[is]distance of so-
lution xis in a nondominated set P is defined as follows:

=
−
−

+
−
−

+ − + −P i
f x f x

f f
f x f x

f f
[ ]

( ) ( ) ( ) ( )
,s distance

i i i i1 1 1 1

1
max

1
min

2 1 2 1

2
max

2
min

s s s s

(27)

where is is the solution number in a nondominated set. f1
max , f1

min and
f2

max , f2
min are the maximum and minimum values of f1 and f2, re-

spectively. Based on the nondominated front and the crowding dis-
tance, if two solutions belong to different fronts, the solution with lower
(better) rank is preferred, and if both solutions belong to the same front,
the solution with larger crowding distance is preferred.

The flow chart of the STA for solving multi-objective optimization
problem in the goethite process is shown in Fig. 5.

2.5. Evaluation mechanism

After using the multi-objective optimization algorithm based on the
STA to solve this problem, a set of optimal solutions of the amounts of
additive is obtained. In order to choose the best one for industrial ap-
plications, an evaluation mechanism based on the concentration of ions
and their trends is proposed. There are two parts in this mechanism: (1)
the trends of the concentration of ions at each switching time in each
reactor; (2) the outlet concentration of ions and their trends in each
reactor.

In the first part of the evaluation mechanism, on the basis of the
optimal set Q={Q1,Q2,…,Qm}, the differentials of the concentration of
ions in #i reactor (i=1,2,3,4) at switching time tn (n=1,2,…,N) are
computed, which represent the trends of the concentration. Fig. 6 il-
lustrates the changing-curve of ion concentration. The solid line shows
the performance of the slow control, where the change of ion con-
centration tends to be slow at each switching time. The dotted line
indicates the performance of the fast control and there is a significant
downward trend in ion concentration at each switching time. Although
the dotted line can change the ion concentration in a short time, the fast
control is inoperable in the goethite process: (i) take the ferrous iron for
example, the fast control will make the ferrous iron oxidize too much in
a short time and it is easily to form ferric hydroxide; (ii) since there is a
sharp tendency at each switching time in the fast control, once the
switching time is deviated, the ion concentration will be greatly

changed and the control accuracy will be reduced. While in the slow
control, even if the switching time exists deviation, the ion concentra-
tion will not have a great change and the whole control performance
will not be influenced a lot; (iii) since the fast control has a strict re-
quirement on the accuracy of switching time, it will result in high
equipment costs to guarantee control effect. In addition, the ion con-
centration of slow control can reach the target value in the specified

Fig. 5. The flow chart of multi-objective optimization algorithm based on the STA and
constrained nondominated sorting.

Fig. 6. The changing-curve of ion concentration.
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time t, thus the slow control is more suitable for the goethite process.
According to Eq. (9), the closer the differential is to zero, the more
steady the ion concentration is (as well as the switching time). The
evaluation function of this part is defined as follows.

∑ ∑= = …
= =

E Q t Q j mc( ) | ̇ ( , )|, 1, 2, , .j
i n

N
i

n j1
1

4

1 (28)

In the second part of the evaluation mechanism, for each optimal
solution, the outlet concentration of ions ( tc ( )j

i ) and their differentials
in #i reactor (i=1,2,3,4) are computed. The ion concentration can
reflect the feasibility of the solution and their trends can represent the
future state of the ion concentration. A sharp trend can cause the ion
concentration to return to the desired situation from an undesired si-
tuation, whereas it can also cause ion concentration to depart from the
desired situation. When the ion concentration is within the acceptable
range without fluctuation, the reaction process must be in a steady
state. When the ion concentration is acceptable but has a sharp ten-
dency that causes concentration changed, the process can not be con-
sidered qualified. In contrast, when the ion concentration exceeds the
limits but with a good tendency for the concentration to return to the
desired range, the situation is not as terrible as it seems to be. To ad-
dress the uncertainty of the complex nature between the concentration
and the process state, fuzzy logic is used to evaluate the performance of
the optimal solution. In this paper, based on their upper and lower
bounds, the concentration of ions are transformed into five linguistic
variables namely VL (Very Low), LL (Little Low), S (Stable), LH (Little
High), VH (Very High). The trends of concentration are also classified
into five parts: NB (Negative Big), NS (Negative Small), Z (Zero), PS
(Positive Small), PB (Positive Big). At the same time, the evaluation
results are defined as seven grades, which is HN (High Negative), MN
(Middle Negative), LN (Low Negative), Z (Zero), LP (Low Positive), MP
(Middle Positive), HP (High Positive). Fig. 7 (a–c) show the member-
ship function of all variables respectively. In Fig. 7 (a), b and d are the
lower and upper bounds of the concentration respectively, and c=(b
+d)/2, a=(3b−d)/2, e=(3d−b)/2. In Fig. 7 (b), g=(d−b)/Tf.
Fig. 7 (d) shows the relationship between two inputs (concentration of
ions and their trends) and one output (evaluation grade). The fuzzy
rules for the inputs and output are given in Table 3. In this paper, the

rules are established by previous analysis of the process.
Since the output of the fuzzy system is a fuzzy value, the centroid

defuzzification method is adopted to convert the evaluation grade to a
real value e*. Thus, the evaluation function of this part for optimal set
Q={Q1,Q2,…,Qm} can be calculated by follows.

∑= = …
=

E Q Q j me( ) | * ( )|, 1, 2, , .j
i

i
j2

1

4
,

(29)

After computing those two parts of the evaluation functions, the
best solution for industrial application can be determined by mini-
mizing the overall evaluation functions, which is given by Eq. (30).

= + = …E Q E Q E Q j mmin ( ) ( ) ( ), 1, 2, , .j j j1 2 (30)

2.6. Strategy diagram of optimal process control

The strategy diagram of the optimal control in the iron precipitation
process is shown in Fig. 8. Based on the mechanism model and technical
requirements, the dynamic multi-objective optimization model is es-
tablished. The discretization method based on control variable and
control interval is used to convert the dynamic optimization problem
into a nonlinear mathematical programming problem, and the STA
cooperated with constrained nondominated sorting is proposed to solve
the optimization problem. By using this optimization method, a set of
optimal solutions is obtained. In order to select the best solution for
industrial application, the evaluation mechanism is proposed which
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Fig. 7. Fuzzy logic evaluation system: (a)
the memberships of ion concentration and
the linguistic variables are VL (Very Low),
LL (Little Low), S (Stable), LH (Little High),
VH (Very High); (b) the memberships of the
trend of ion concentration and the linguistic
variables are NB (Negative Big), NS
(Negative Small), Z (Zero), PS (Positive
Small), PB (Positive Big); (c) the member-
ships of evaluation grade and the grades are
HN (High Negative), MN (Middle Negative),
LN (Low Negative), Z (Zero), LP (Low
Positive), MP (Middle Positive), HP (High
Positive); (d) the relationships among the
evaluation grade, ion concentration and its
trend.

Table 3
Fuzzy rules for the inputs and output.

Ion concentration Differential of concentration

NB NS Z PS PB
VL HN HN HN MN MN
LL MN MN LN LN LN
S LN Z Z Z LP
LH LP LP LP MP MP
VH MP MP HP HP HP
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consists of two parts: the first considers the concentration trends at each
switching time in each reactor, the second considers the outlet con-
centration and their trends in each reactor. Moreover, in the second
part, fuzzy logic is used to deal with the uncertainty of the complex
nature. Finally, the effectiveness of the proposed methods and strategies
is verified by industrial experiments.

3. Results and discussion

In this paper, we investigate the goethite process in a certain zinc
hydrometallurgy plant in China, and the industrial data in May 2015 is
collected for analysis. In the goethite process, the flow rate is measured
on-line and the ion concentration is accessed every 2 h. Since the inlet
ion concentration in the reactor fluctuates in a small range for a period
of time under normal production condition, the measurement delay is
ignored in our proposed method. The time of solution from the #1
reactor to #4 reactor is approximately 8 h, which means the terminal
time in the optimization problem (Tf) is 480 min. The kinetic model of
the goethite process has been validated by our research group (Xie
et al., 2017), and in this study, we have performed some simulations to
verify the effectiveness of the proposed method in the optimization of
the goethite process. In manual control, 8-h shifts schedule is adopted
in the zinc hydrometallurgy plant and the rate of oxygen and zinc oxide
to be added in different reactors are adjusted according to the experi-
ence of the operators working in each shift. The simulations in this
paper are carried out for 48 h(6 shifts), and the flow rate of leaching
solution and underflow are shown in Fig. 9 (a). The inlet concentration
of ferrous iron, ferric iron and the pH value are described in Fig. 9 (b).

In order to solve the dynamic multi-objective optimization problem
in the goethite process, a discretization method based on control vari-
able and control interval is explored and a multi-objective optimization
method based on the STA and constrained nondominated sorting is

proposed in this paper. All of the simulations are run under the
MATLAB (Version R2016a) software platform. The parameter settings
of the STA are shown as follows: α is reducing periodically from 1 to
1e−4 in an exponential way, β,γ and δ are all set to 1. All parameter
settings are based on previous papers (Han et al., 2017a; Wang et al.,
2016; Xie et al., 2016). To analyze the performance of the proposed
multi-objective optimization method based on the STA (MOSTA), the
comparisons between MOSTA and nondominated sorting genetic algo-
rithm II (NSGAII) (Deb and Agrawal, 1995) are conducted. NSGAII is a
computationally fast and elitist algorithm based on a nondominated
sorting approach which is proposed by Deb and Agrawal (1995). After
combining the existing parameter settings of NSGAII in previous papers,
the crossover probability of pc=0.9 and a mutation probability of
pm=1/n (where n is the number of decision variables) are used (Deb
and Agrawal, 1995).

In order to compare the computational cost of NSGAII and MOSTA,
the average execution time of these two optimization algorithms is
analyzed. For each shift, 10 independent runs are performed and the
average execution time (seconds) of the optimization algorithms using
2.6 GHz Intel i5 PC with 8 G RAM is shown in Table 4. In terms of the
information of Table 4, we can find that the speed of MOSTA is almost
equal to that of NSGAII. For example, in the first sample, the execution
time of MOSTA is 743.5317 s and the time of NSGAII is 767.1249 s.

Figs. 10 to 12 illustrate the cost and the efficiency, as conflicting
objectives, in the 1st to 6th shifts. The color of each point shows the
evaluation value of each optimal solution. Based on the evaluation
mechanism in Section 2, the solution with the smallest evaluation value
is chosen as the best one for industrial application. It is obvious that the
Pareto-optimal front obtained by MOSTA can constrained dominate
most solutions of NSGAII. That means the proposed multi-objective
optimization algorithm in this paper has competitive results when
compared with NSGAII (Deb et al., 2002). The evaluation value of

Fig. 8. The strategy diagram of the optimal control in
the iron precipitation process.
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NSGAII is omitted in this paper since most of its optimal solutions are
dominated by MOSTA. According to the data obtained from a real-life
factory, in the 1st shift, the cost and the efficiency of manual control is
4.9959e5 ($/h) and 0.9464 (%) respectively, which are worse than the
optimal control’. The same is true for other shifts.

The simulated outlet ferrous iron concentration, ferric iron

concentration and pH value in each reactor are shown in Fig. 13. We
can find that in #1 reactor, the ferrous iron concentration is always in
the desired range of 6 g/L to 8 g/L, and the ferric iron concentration is
also< 2 g/L in the whole time. The pH value in #1 reactor also belongs
to the range of 2.7 to 3.5. Moreover, the concentration of ions in #2, #3
and #4 reactor all satisfy the requirements of the effluent, which means
the best solution obeys the constraints in the optimization problem and
indicates the feasibility of the best solution. Since the ferrous iron is the
most interesting ion in the goethite process, and the ferric iron con-
centration is relative small and pH in the reactor is maintained at about
3.0, we mainly focus on the concentration of outlet ferrous irons in each
reactor in this paper.

To verify the correctness of the evaluation mechanism, the simu-
lated variations of the ferrous iron concentration in the 1st shift is
shown in Fig. 14. According to the first part of evaluation mechanism,
the smaller the ion concentration changes at the switching time, the
more steady the process is. The second part of evaluation mechanism
combines the information of outlet ion concentration and its trend.
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Fig. 9. Inlet flow rate and the concentration of ions of the goethite process.

Table 4
The average execution time (seconds) of all test.

Test NSGAII MOSTA

Shift 1 767.1249 743.5317
Shift 2 747.9778 738.0382
Shift 3 687.5559 673.5615
Shift 4 673.4471 668.6814
Shift 5 734.8874 722.1651
Shift 6 777.2505 764.5339
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Fig. 10. Optimal solutions with evaluation mechanism in the 1st and 2nd samples.
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Therefore, the desired condition is as follows: on the one hand, the iron
concentration tends to be unchanged at each switching time; on the
other hand, the iron concentration at other times is in the acceptable
situation without too much fluctuation. In Fig. 14, the concentration of
the blue line usually only changed when its trend is steady. Compared
with the pink line and the green line, there are less fluctuations in the
blue line, especially in the #4 reactor. Therefore, the result with the
smallest evaluated value is more stable than the result with the larger
evaluated value. That shows the effectiveness of the evaluation me-
chanism.

The optimization results show the feasibility of the optimization
strategy and the evaluation mechanism. In order to show the super-
iority of the proposed method, the detailed comparisons between
manual control and optimal control are shown below. Fig. 15 shows the
comparisons of the cost and efficiency by manual control and optimal
control. In practice, the operators always add excess oxygen and zinc
oxide to ensure the quality of production, resulting in a lot of waste.
Therefore, the costs under manual control are much larger than optimal
control. At the same time, the efficiency of the ion precipitation process

has been improved under the optimal control. The detailed additions of
oxygen and zinc oxide set by two different control strategies are shown
in Fig.s 16 and 17 respectively. Although the additions of manual
control are sometimes less than the amounts of proposed control, the
average cost of manual control is still more than optimal control's.

Fig. 18 shows the simulated outlet ferrous iron concentration from
#4 reactor under manual control and optimal control respectively. The
manual control of precipitation process depends largely on operator's
experience, and if the operator is inexperienced or the operation is
untimely, the outlet ferrous iron concentration may fluctuate sig-
nificantly. Based on the control strategy proposed in this paper, the
outlet ferrous iron concentration is closer to lower bounds of its tar-
geted range with small fluctuations.

Table 5 is the performance of manual control and optimal control in
the goethite process. Compared with manual control, the daily average
additions of oxygen and zinc oxide under the proposed control decrease
by 778.0854 m3 /day and 4.9013 t/day, respectively. From the mean
value and the fluctuation range of the outlet ferrous iron concentration
in #4 reactor, it is observed that the outlet ferrous iron concentration in
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Fig. 13. The outlet ferrous iron concentration, ferric iron concentration and pH value in each reactor.

Fig. 14. The variations of the ferrous iron con-
centration in four reactors.
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manual control usually fluctuate over a wide range. But by applying the
optimal control strategy, the outlet ferrous iron concentration is much
more stable. From simulation results, the proposed method could not
only reduce the cost of the process as well as improve its efficiency, but
also make the outlet concentration of ions more stable within the re-
quired ranges. Since the stability of outlet ion concentration in the
goethite process plays an important role in subsequent process such as
solution purification and electrowinning, the method proposed in this
paper also has a positive effect on the whole process of zinc hydro-
metallurgy.

4. Conclusions

Based on the technical requirements and the chemical kinetics in the

goethite process, a dynamic optimization model is established to
minimize the cost of reagents and maximize the efficiency of iron
precipitation simultaneously. A discretization method based on control
variable and control interval is proposed to transform the dynamic
problem to a nonlinear mathematical programming problem. Then, the
constrained nondominated sorting is cooperated with the STA to solve
multi-objective nonlinear programming. An evaluation mechanism is
proposed to choose the best solution for industrial applications. In this
mechanism, the information of the concentration and their trends are
used for analysis. The simulation results have illustrated that the pro-
posed multi-objective state transition algorithm has competitive per-
formance compared with NSGAII. Furthermore, the optimal control has
better control results than manual control in terms of the cost and the
efficiency.
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Fig. 15. Comparisons of the cost and effi-
ciency by two control strategies.

Fig. 16. Oxygen amounts setting by two different control strategies.
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Notation

Equipment
BK Zinc Oxide Bunker
R Reactor
T Overflow Tank
FP Filter Press
TH Thickener

Variable
α, β, γ the reaction orders of oxidation reaction
λ the coefficient of dissolved oxygen
ηi the coefficient of catalytic action in #i reactor
εa the rotation factor in the state transition algorithm
εb the translation factor in the state transition algorithm

εc the expansion factor in the state transition algorithm
εd the axesion factor in the state transition algorithm
θi the piecewise constant functions in #i reactor
κi the vector of control parameters in #i reactor
A, B the transformation operators in the state transition algorithm
D the decision variables in optimization problem
E1 the first part evaluation value
E1 the second part evaluation value
E the total evaluation value
F the flow rate of the leaching solution
Fu the flow rate of the underflow
G the overall constraint violation
Gig the igth constraint violation
Imax the max iteration number in optimization algorithm

Fig. 17. Zinc oxide amounts setting by two different control strategies.
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Fig. 18. Comparisons of the outlet ferrous iron
concentration from #4 reactor by two control
strategies.

Table 5
Comparison of the control performance by manual control and optimal control.

Methods The outlet ferrous iron concentration Average amount of additive Efficiency

Mean value (g/L) Qualification rate (%) Fluctuation range (g/L) Oxygen (m3/day) Zinc oxide (t/day)
Manual control 0.6032 100 [0.4900,0.7139] 8426.0001 97.1000 93.90%
Optimal control 0.4864 100 [0.4822,0.4950] 7647.9147 92.1987 95.29%
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J1, J2 the objective functions in the iron precipitation process
P[is]distance the crowding distance of isth solution in a nondominated set
Q the optimal set in multi-objective optimization problem
Sτ the set of solution that xτ constrained dominates
V the volume of reactor
c i

1 the concentration of Fe2+ in #i reactor
c i

2 the concentration of Fe3+ in #i reactor
c i

3 the concentration of H+ in #i reactor
c i

0,1 the inlet concentration of Fe2+ in #i reactor
c i

0,2 the inlet concentration of Fe3+ in #i reactor
c i

0,3 the inlet concentration of H+ in #i reactor
e * the evaluation value of fuzzy system
fif

the ifth objective function
gig the igth inequality constraint function
i the reactor number
if the objective function number
ig the constraint function number
is the solution number in a nondominated set
j the solution number in an optimal set
k i

1 the oxidation rate constant in #i reactor
k i

2 the hydrolysis rate constant in #i reactor
k i

3 the neutralization rate constant in #i reactor
l the solution number in the state transition algorithm
mτ the number of solutions which constrained dominate xτ
n the control interval number
p1 the price of oxygen
p2 the price of zinc oxide
ri
1 the oxidation rate in #i reactor

ri
2 the hydrolysis rate in #i reactor

ri
3 the neutralization rate in #i reactor
Tf the final time of time span
u i

1 the rate of the addition of oxygen in #i reactor
u i

2 the rate of the addition of zinc oxide in #i reactor
v the function of state and historical state
x the candidate solution in the state transition algorithm
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